Class 150/300 - Valve size [inch] 2...6

KAT-A 1920-AWWA

Product characteristics and benefits

- Triple function air valve
- · Size of the inlet area correspond to the size of the outlet area
- Single chamber air valve in compact design acc. to AWWA C512
- With sidewise drainage plug
- Seat tightly down to 5 psi
- Venting function:
 - Large orifice to vent high quantities of air during draining the pipeline
 - Large orifice to release high quantities of air during filling the pipeline
- Small orifice to release low quantities of air during operation under pressure
- Very high discharge capacity up to sonic velocity due to stabilised floater
- With flange ends on both sides acc. to ANSI B16.42 Class 150/300
- Resilient seated
- Outlet female threaded acc. to DIN ISO 228

Materials

- Float: For class 300 made of plastic
- Body: Ductile iron ASTM A536, Grade 65-45-12
- Bonnet: Ductile cast iron ASTM A536 65-45-12
- Bonnet bolts: Stainless steel ASTM A240 Type 316
- Inner parts: Stainless steel ASTM A240 Type 321
- Float: Stainless steel ASTM A240 Type 316Ti
- Sealing: EPDM

Corrosion protection

Internally and externally epoxy coated

Versions

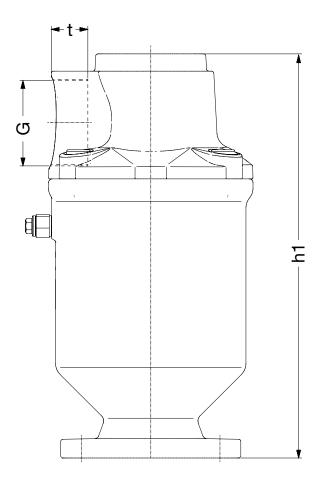
- Standard version as described
- With insect protection
- Special low pressure seat to 1.5 psi
- Version with class 300 flange for 400 psi

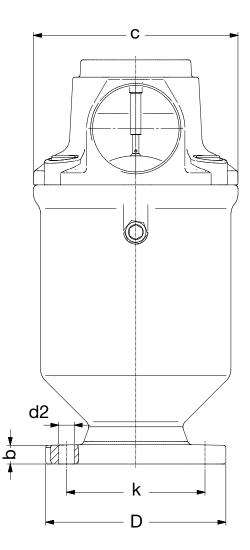
Field of application

- Chamber installation
- Installation in plants

Tests and approvals

- Final inspection test
 - acc. AWW C512
 - acc. NSF-372


Note


For proper installation and safe operation please follow the installation and operation instructions: KAT-B 1912

VAG DUOJET[®] Automatic Air Valve AWWA C512 Single-chamber type

Drawing

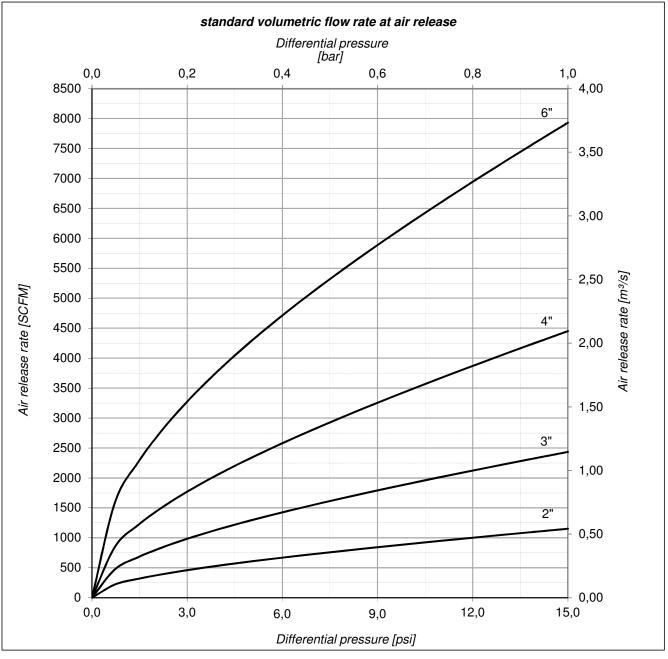
Technical data

Class 150

Valve size [inch]		2	3	4	6
G Screw con-	[inch]	2	3	4	6
nection					
D	[inch]	6.00	7.50	9.00	11.00
b	[inch]	0.75	0.94	0.94	1.00
С	[inch]	7.28	7.95	10.23	12.80
d2	[inch]	0.75	0.75	0.75	0.88
h1	[inch]	13.30	15.55	20.24	23.66
k	[inch]	4.45	6.00	7.50	9.50
t	[inch]	1.18	1.18	1.97	2.56
No. of holes		4	4	8	8
Waight approx.	[lbs]	42	62	115	178
Volume ap-	[ft ³]	4.41	5.63	9.44	13.8
prox.					

Technical data

Class 300


Valve size [incl	3	4	6	
G Screw con-	[inch]	3	4	6
nection				
D	[inch]	8.25	6.50	12.50
b	[inch]	1.12	0.88	1.44
С	[inch]	7.95	7.28	12.80
d2	[inch]	0.88	0.75	0.88
h1	[inch]	15.55	13.30	23.66
k	[inch]	6.62	5.00	10.62
t	[inch]	1.18	1.18	2.56
No. of holes		8	8	8
Waight approx.	[lbs]	64	43	194
Volume ap-	[ft ³]	5.63	4.41	13.8
prox.				

Water

Further information

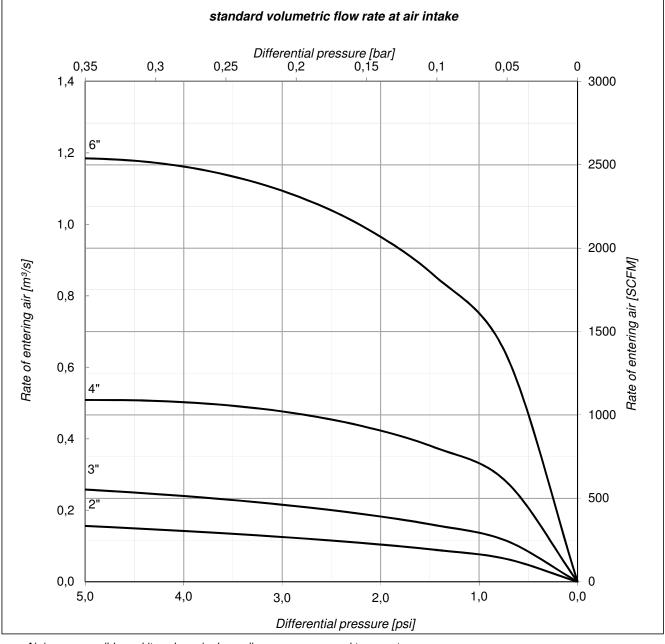
Air is compressible and its volume is depending on pressure and temperature.

Conversion:

$$Q = Q_N * \frac{p_N * T}{p * T_n}$$

with
$$p_N = 1,013 bar$$

 $T_N = 273,15$ K


p = ambient pressure at valve location T = ambient temp. at valve location

and

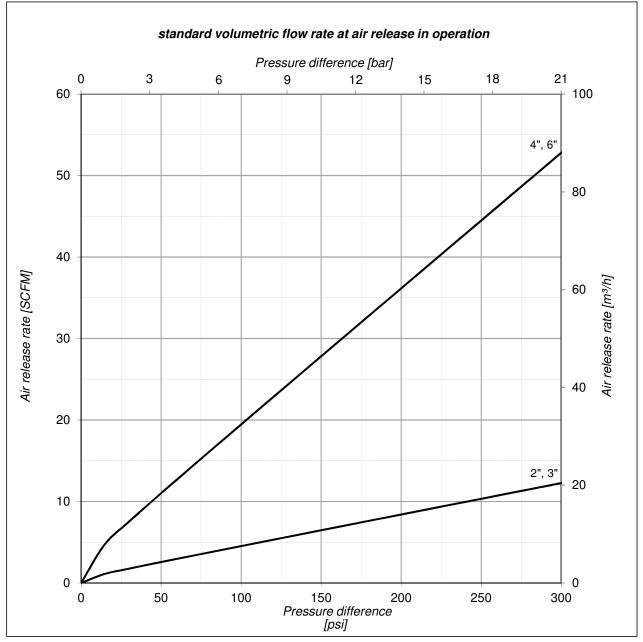
Further information

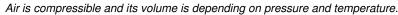
Air is compressible and its volume is depending on pressure and temperature.

 $Q = Q_N * \frac{p_N * T}{p * T_n}$

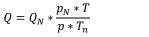
Conversion:

with $p_N = 1,013 bar$ and


 $T_N = 273,15$ K


p = ambient pressure at valve location T

T = ambient temp. at valve location



Further information

Conversion:

with
$$p_N = 1,013 bar$$

 $T_N = 273,15$ K

p = ambient pressure at valve location T = ambient temp. at valve location

and

