

VAG Hydrants Reliable protection for lives and property

VAG HYDRUS® G Underground Hydrant

Not all burried gems are in a treasure chest

- Safety bayonet interlock: A mechanical limit stop prevents "blow out" of the inner parts when built-up pressure occurs unintentionally in the pipeline. To remove the inner parts, it is first necessary to turn the bayonettype lock.
- Double drainage: Additional drainage and its step-like extensions of the drainage channels prevent clogging by corrosion and foreign particles.
- **Double shut-off:** Maximum safety thanks to two independently acting sealing systems.
- Self-closing cover: Bonnet with orifice protection and integrated dirt trap protects the hydrant against the penetration of dirt.

Technical details

- Nominal pressure PN 16
- Nominal diameter DN 80, 100
- Standard version: Body, cover and bayonet made of ductile iron EN-GJS-400-15 (GGG-40)/EN-GJS-500-7 (GGG-50), valve cone made of ductile iron EN-GJS-400-15 (GGG-40) vulcanized EPDM on all sides, inner parts made of stainless steel 1.4301 and 1.4057
- Form A with single shut-off (VAG HYDRUS® G1) or form AD with double shut-off (VAG HYDRUS® G2) according to EN 14339 and EN 1074-6, with flange connection according to EN 1092-2
- Coating: inside and outside epoxy coating (GSK quality)

Fields of application

Water distribution

Interesting facts

 One-piece body: Design of the body avoids the risk of leakage due to an additional flange between foot and pillar.

VAG NOVA NIRO 365

Maintenance-free design, which saves lives

- **365 days of safety:** Guaranteed maintenance-free and reliably low actuation torques.
- Encapsulated bearing: Guaranteed permanently maintenance-free drive due to lubricant depot and protection of the drive components against deposits.
 The backlash-free bearing guarantees maximum reliable operation.
- Double drainage: Additional drainage and its step-like extensions of the drainage channels prevent clogging by corrosion and foreign bodies.
- Double shut-off: Maximum safety thanks to two independently acting sealing systems.

Technical details

- Nominal pressure PN 16
- · Nominal diameters DN 80, 100
- Standard design: Valve cone made of ductile iron EN-GJS-400-15 (GGG- 40) vulcanized on all sides with EPDM, upper column and head made of stainless steel 1.4301, lower column made of ductile cast iron EN-GJS-500-7 (GGG-50), inner parts made of stainless steel 1.4301, 1.4057 and 1.4308, stem nut and seat bushing made of brass.
- Form AUD according to EN 1074-6 and EN 14384, with flange connection according to EN 1092-2, with 2×B or 2×B + 1×A outlets.
- Coating:
 - Lower pillar: inside and outside epoxy coating (GSK quality)
 - Hydrant head: inside and outside epoxy coating, outside additionally UV-resistant polyester coating

Fields of application

Industry

Power plants

Interesting facts

 Easy to service: Retrofitting of the new inner set incl. encapsulated spindle bearing as well as replacement of the upper pillar as retrofit package on already installed hydrants possible.

VAG NOVA Standpost Hydrant

A well-known classic

- Double drainage: Additional drainage and its step-like extensions of the drainage channels prevent clogging by corrosion and foreign particles.
- **Double shut-off:** Maximum safety thanks to two independently acting sealing systems.
- Safety bayonet interlock: A mechanical limit stop prevents "blow out" of the inner parts when built-up pressure occurs unintentionally in the pipeline. To remove the inner parts, it is first necessary to turn the bayonettype lock.
- Break point: Loose flange connection on the rated break point allows free alignment of the hydrant and protects the buried pipeline from damage in the event of damage to the above-ground part of the hydrant.
- Fast and safe installation: A patented, integrated multifunction sealing ring on the connecting flange significantly reduces the effort required for assembly.

Technical details

- Nominal pressure PN 16
- Nominal diameters DN 80, 100
- Standard design: Valve cone made of ductile iron EN-GJS-400-15 (GGG- 40) vulcanized on all sides with EPDM, upper column and head made of ductile cast iron EN-GJS-400-15 (GGG-40), lower column made of ductile cast iron EN-GJS-500-7 (GGG-50), inner parts made of stainless steel 1.4301 and 1.4057, stem nut and seat bushing made of brass.
- Form AUD or AFUD according to EN 1074-6 and EN 14384, with flange connection according to EN 1092-2, with 2×B or 2×B + 1×A outlets.
- · Coating:
 - Lower pillar: inside and outside epoxy coating (GSK quality)
 - Upper parts: inside and outside epoxy coating, outside additionally UV-resistant polyester coating
- · Versions with different combinations of outlets available

Fields of application

Industry

Power plants

Interesting facts

 Ready to serve: Drop jacket version with integrated shut-off valves allows hydrant to be kept under pressure prepared for emergency during most of the year.

VAG NOVA 1885 Standpost Hydrant

Modern technology in a historical shape

- Double drainage: Additional drainage and its step-like extensions of the drainage channels prevent clogging by corrosion and foreign particles.
- **Double shut-off:** Maximum safety thanks to two independently acting sealing systems.
- Safety bayonet interlock: A mechanical limit stop prevents "blow out" of the inner parts when built-up pressure occurs unintentionally in the pipeline. To remove the inner parts, it is first necessary to turn the bayonettype lock.
- Break point: Loose flange connection on the rated break point allows free alignment of the hydrant and protects the buried pipeline from damage in the event of damage to the above-ground part of the hydrant.
- Fast and safe installation: A patented, integrated multifunction sealing ring on the connecting flange significantly reduces the effort required for assembly.

Technical details

- Nominal pressure PN 16
- Nominal diameter DN 80, 100
- Standard design: Valve cone made of ductile iron EN-GJS-400-15 (GGG- 40) vulcanized on all sides with EPDM, upper column and head made of ductile cast iron EN-GJS-400-15 (GGG-40), lower column made of ductile cast iron EN-GJS-500-7 (GGG-50), inner parts made of stainless steel 1.4301 and 1.4057, stem nut and seat bushing made of brass.
- Form AUD according to EN 1074-6 and EN 14384, with flange connection according to EN 1092-2, with 2×B or 2×B + 1×A outlets.
- · Coating:
 - Lower pillar: inside and outside epoxy coating (GSK quality)
 - Upper parts: inside and outside epoxy coating, outside additionally UV-resistant polyester coating
- · Versions with different combinations of outlets available

Fields of application

Industry

Power plants

Interesting facts

• **Historical root:** Upper pillar is made as a replica of the historic 'Reuther' model from year 1885.

VAG NOVA 150 Standpost Hydrant

The best choice for places where capacity really matters

- High flow capacity: Industry-oriented design with flow-optimized internal profile provides flow performance up to 930 m³/h (2×B + 2×A outlets).
- **Double shut-off:** Maximum safety thanks to two independently acting sealing systems.
- Safety bayonet interlock: A mechanical limit stop prevents "blow out" of the inner parts when built-up pressure occurs unintentionally in the pipeline. To remove the inner parts, it is first necessary to turn the bayonettype lock.
- Break point: Loose flange connection on the rated break point allows free alignment of the hydrant and protects the buried pipeline from damage in the event of damage to the above-ground part of the hydrant.

Technical details

- Nominal pressure PN 16
- Nominal diameter DN 150
- Standard design: Valve cone made of ductile iron EN-GJS-400-15 (GGG- 40) vulcanized on all sides with EPDM, upper column and head made of ductile cast iron EN-GJS-400-15 (GGG-40), lower column made of ductile cast iron EN-GJS-500-7 (GGG-50), inner parts made of stainless steel 1.4301 and 1.4057, stem nut and seat bushing made of bronze.
- Form AU or AFU according to EN 1074-6 and EN 14384, with flange connection according to EN 1092-2, with 2×B + 2×A outlets.
- · Versions with different combinations of outlets available
- Coating:
 - Lower pillar: inside and outside epoxy coating (GSK quality)
 - Upper parts: inside and outside epoxy coating, outside additionally UV-resistant polyester coating

Fields of application

Industry

Power plants

Interesting facts

 Ready to serve: Drop jacket version with integrated shut-off valves allows hydrant to be kept under pressure prepared for emergency during most of the year.

VAG RIGUS® Standpost Hydrant

Quality from top to bottom

- **Double shut-off:** Maximum safety thanks to two independently acting sealing systems.
- Safety bayonet interlock: A mechanical limit stop prevents "blow out" of the inner parts when built-up pressure occurs unintentionally in the pipeline. To remove the inner parts, it is first necessary to turn the bayonettype lock.
- Fast and safe installation: A patented, integrated multifunction sealing ring on the connecting flange significantly reduces the effort required for assembly.

Technical details

- Nominal pressure PN 16
- Nominal diameter DN 80, 100
- Standard design: Valve cone made of ductile iron EN-GJS-400-15 (GGG- 40) vulcanized on all sides with EPDM, lower part and head made of ductile cast iron EN-GJS-400-15 (GGG-40), pillar made of steel, inner parts made of stainless steel 1.4301 and 1.4057, stem nut made of brass.
- Form A or AD according to EN 1074-6 and EN 14384, with flange connection according to EN 1092-2, with different combinations of A-, B- or C-outlets.
- · Versions with different combinations of outlets available
- Coating:
 - Base body: inside and outside epoxy coating (EN 14901-1+A1)
 - Upper parts: inside and outside epoxy coating, outside additionally UV-resistant polyester coating

Fields of application

Industry

Power plants

VAG Chamber Hydrant

A small but handy assistant

- Enclosed, integrated stem bearing increases reliability and longevity.
- Automatic draining and pressure water protection, thus safe draining and protection from frost damage.

Technical details

- Nominal pressure PN 10
- Nominal diameter DN 65
- Standard version: Body, bonnet and cone made of ductile iron EN-GJS-400-15 (GGG-40), cone vulcanized EPDM on all sides
- With flange connection according to Württemberg pit specification (Württemberger Schachteinbau, cylinder boring), body with cast bayonet DN 50
- Coating: inside and outside epoxy coating (EN 14901-1+A1)

Fields of application

Power plants

The Valve Experts Die Armaturen-Experten

